
The Bi-Criteria Doubly Weighted Center-Median
Path Problem on a Tree

J. Puerto
Facultad de Matemáticas. Universidad de Sevilla

A.M. Rodríguez-Chía
Facultad de Ciencias. Universidad de Cádiz

A. Tamir
School of Mathematical Sciences. Tel Aviv University

D. Pérez-Brito
ETS de Ingeniería Informática. Universidad de La Laguna

Given a tree network T with n nodes, let PL be the
subset of all discrete paths whose length is bounded
above by a prespecified value L. We consider the loca-
tion of a path-shaped facility P ∈ PL, where customers
are represented by the nodes of the tree. We use a bi-
criteria model to represent the total transportation cost
of the customers to the facility. Each node is associated
with a pair of nonnegative weights: the center-weight
and the median-weight. In this doubly weighted model, a
path P is assigned a pair of values (MAX (P), SUM (P)),
which are, respectively, the maximum center-weighted
distance and the sum of the median-weighted distances
from P to the nodes of the tree. Viewing PL and the pla-
nar set {(MAX (P), SUM (P)) : P ∈ PL} as the decision
space and the bi-criteria or outcome space respectively,
we focus on finding all the nondominated points of the
bi-criteria space. We prove that there are at most 2n non-
dominated outcomes, even though the total number of
efficient paths can be �(n2), and they can all be gener-
ated in O(n log n) optimal time. We apply this result to
solve the cent-dian model, whose objective is a convex
combination of the weighted center and weighted median
functions. We also solve the restricted models, where the
goal is to minimize one of the two functions MAX or SUM ,
subject to an upper bound on the other one, both with
and without a constraint on the length of the path. All
these problems are solved in linear time, once the set

Received December 2004; accepted January 2006
Correspondence to: J. Puerto; e-mail: puerto@us.es
Contract grant sponsor: Spanish Ministry of Education and Science; Con-
tract grant numbers: BFM2001-2378, BFM2001-4028; BFM2004-0909, and
HA2003-0121
DOI 10.1002/net.20112
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2006 Wiley Periodicals, Inc.

of nondominated outcomes has been obtained, which in
turn, results in an overall complexity of O(n log n). The
latter bounds improve upon the best known results by a
factor of O(log n). © 2006 Wiley Periodicals, Inc. NETWORKS,
Vol. 47(4), 237–247 2006

Keywords: location on trees; bi-criteria location; center-median
paths; length constrained paths

1. INTRODUCTION

In a typical location problem there is a set of demand
points embedded in some metric space, and the objective
is to locate a specified number of servers optimizing some
criterion, which usually depends on the distances between
the demand points and their respective servers. Traditionally,
most articles focus on location problems where a server (facil-
ity) is representable by a point in the metric space. However,
in recent years there has been a growing interest in study-
ing the location of connected structures, which can not be
represented by isolated points in the space. These problems
were motivated by concrete decision problems related to rout-
ing and network design (i.e., extending or adding lines to an
existing road network). These lines can be viewed as new
facilites. Studies on location of connected structures (called
extensive facilities) already appeared in the early eighties
[8, 13, 19–21, 29]. The most common extensive facilities are
paths and subtrees of the underlying network. The reader is
referred to [12], where the authors focus on the complexity of
solving many versions of location problems involving exten-
sive facilities. The need to study more complicated location
models and use them to solve real scenarios has also led to
the introduction of multicriteria optimization approaches and

NETWORKS—2006—DOI 10.1002/net

methods into Location Analysis. (See [22] for an overview
of the different models and solution procedures used in mul-
ticriteria location problems.) However, almost all studies on
multicriteria location models consider only point facilities.
To the best of our knowledge, there are only very few articles
that apply multicriteria analysis to extensive facility location
models.

In this article we concentrate on certain bi-criteria cost
minimization problems involving the location of a discrete
path facility (a line) on a tree network with n nodes, where
these nodes represent the customers. (By a discrete path
we mean a path whose endpoints are nodes of the under-
lying tree, and not interior points of some edges.) We note
that, in general, when the objective function can be com-
puted in polynomial time for a given path or is given by
some oracle model, single discrete path location problems
are solvable in polynomial time because there are a quadratic
number of different paths in the tree. Thus, for such mod-
els the goal is to find low complexity algorithms. In view
of the fact that there are a quadratic number of paths in a
tree, the major question is whether there are subquadratic
algorithms for path location problems. This is still a most
challenging open problem for several general path location
models on trees. (See the discussion in the last section.) For
some important models subquadratic complexity has already
been achieved. For example, subquadratic algorithms are
known for the weighted path median problem, where the
objective is the sum of median-weighted distances, and the
weighted path center problem where the objective is the max-
imum center-weighted distance from the path to the nodes
of the considered tree. In both models the selected path is
also restricted by a prespecified length constraint. (See e.g.,
[1, 2, 6, 7, 9, 13, 15, 19–21, 23, 24, 27–30, 32–36], and the ref-
erences therein.) A model where the objective is to minimize
the variance of the distances to the path is considered in [10].
The authors present an O(n2 log n) algorithm to solve this
model.

Averbakh and Berman [3] consider a bi-criteria path loca-
tion problem without the length constraint. Specifically, the
two criteria that they study are the unweighted center and
the weighted median objectives. A linear time algorithm was
developed for the following three problems: (1) the mini-
mization of a convex combination of the above pair of criteria
(the cent-dian problem), (2) the minimization of the weighted
median criterion subject to an upper bound on the maximum
unweighted distance from the selected path, and (3) the min-
imization of the unweighted maximum distance subject to an
upper bound on the median objective. Becker et al. [4,5] study
the generalization of the last two problems to the case where
the length of the selected path cannot exceed a prespecified
value L. They solve this pair of constrained minimization
problems in O(n log2 n) time.

In this article we extend, generalize, and improve upon
the results in [3–5]. We also consider tree graphs only, and
use a bi-criteria model to represent the total transportation
cost of the customers (nodes) to the facility (path). Given
a tree network T with n nodes, let PL be the subset of all

discrete simple paths whose length is bounded above by a
prespecified value L. We consider the location of a path-
shaped facility P ∈ PL. Each node is associated with a pair
of nonnegative weights: the center-weight and the median-
weight. In this doubly weighted model, each path P ∈ PL

is assigned a pair of values (MAX(P), SUM(P)), which are,
respectively, the maximum center-weighted distance and the
sum of the median-weighted distances from P to the nodes
of the tree.

Viewing PL and the planar set {(MAX(P), SUM(P)) : P ∈
PL} as the decision space and the bi-criteria or outcome space
respectively, we focus on finding all the nondominated points
of the bi-criteria space. We note that in the models in [3–5],
all the center weights are identical. (This uniformity assump-
tion simplifies the combinatorial complexity of the model
significantly. For example, the unweighted path center with
a length constraint is solved in O(n) time in [35], while the
best algorithm known for the weighted version has O(n log n)

complexity [33, Section 3.2].) Studying only this unweighted
model without a length constraint on the selected path, Aver-
bakh and Berman [3] proved that there are at most n − 1
nondominated outcomes, and gave an O(n log n) algorithm
to generate all of them.

We consider the doubly weighted model with a length
constraint, and prove that there are at most 2n nondom-
inated points in the bi-criteria space. (Note that the total
number of efficient paths can actually be �(n2); see [3].)
We then show how to generate all these nondominated points
in O(n log n) optimal time. We apply this result to solve the
cent-dian model, whose objective is a convex combination of
the weighted center and weighted median functions. We also
solve the restricted models, where the goal is to minimize
one of the two functions MAX or SUM, subject to an upper
bound on the other one, both with and without a constraint
on the length of the path. All these problems are solved in
linear time, once the set of nondominated outcomes has been
obtained, which in turn, results in an overall complexity of
O(n log n). The latter bounds improve upon the best known
results by a factor of O(log n). (See Table 1 for a comparison
of results; new results are indicated in boldface in the table.)

In the next section we formally introduce the necessary
notation and define the bi-criteria path location problems. In
Section 3, we prove that there are at most 2n nondominated
outcomes, and present an O(n log n) algorithm to generate the
set of different values that the function MAX(P) can take on.
In Sections 4–5 we provide O(n log n) algorithms to compute
the set of nondominated outcomes. Section 4 is devoted to
the unconstrained case, where there is no length constraint.
The algorithm for this case is much easier. It also yields a
linear time procedure for solving the path cent-dian prob-
lem when the center objective is unweighted (matching the
complexity in [3]). Section 5 deals with the case where there
is a length constraint on the selected path. More sophisti-
cated tools are needed to generate the set of nondominated
outcomes with the same complexity. In the last section we
discuss some challenging open problems for path location
on trees.

238 NETWORKS—2006—DOI 10.1002/net

TABLE 1. Summary of results.

Center unweighted Doubly weighted
models modelsa

Problem Complexity Complexity

Bicriteria (MAX(P), SUM(P)) O(n log n) [3] �(n log n)

min
s.t.

SUM(P)

MAX(P) ≤ α
O(n) [3] O(n log n)

min
s.t.

MAX(P)

SUM(P) ≤ α
O(n) [3] O(n log n)

min
s.t.

SUM(P)

MAX(P) ≤ α

L(P) ≤ L
O(n log2 n) [5] �(n log n)

min
s.t.

MAX(P)

SUM(P) ≤ α

L(P) ≤ L
O(n log2 n) [5] O(n log n)

aBoldfaced results are new results in the article.

2. NOTATION AND PROBLEM DEFINITIONS

Let T = (V , E) be an undirected tree network with node
set V = {v1, . . . , vn} and edge set E = {e2, . . . , en}. Each
edge ej, j = 2, 3, . . . , n, has a positive length lj and is assumed
to be rectifiable. In particular, an edge ej is identified as an
interval of length lj so that we can refer to its interior points.
We assume that T is embedded in the Euclidean plane. Let
A(T) denote the continuum set of points on the edges of T .
In particular, each subgraph of T is also viewed as a subset of
A(T). We refer to an interior point on an edge by its distance
along the edge to the nodes of the edge.

Let Pij denote the unique simple path in A(T) connecting
vi and vj. Suppose that the tree T is rooted at some specified
node, say v1. For each node vj, j = 2, 3, . . . , n, let vp(j), the
parent of vj, be the node v ∈ V closest to vj, v �= vj, on
P1j. Thus, vj is a child of vp(j). Let S(vj) denote the set of
children of vj. Node vj is a leaf if it has no children. A node
vi is a descendant of vj if vj is on Pi1. Vj will denote the set of
all descendants of vj, and N(vj) will denote the set of all the
nodes adjacent to vj. By definition we have N(v1) = S(v1),
and N(vj) = S(vj)∪{vp(j)}, for vj �= v1. For any node vi, let Fi

denote the forest obtained from T by removing vi. For a node
vj �= vi, let T(vi, vj) denote the unique subtree (connected
component) of Fi which contains vj (see Fig. 1).

The edge lengths induce a distance function on A(T).
For any pair of points x, y ∈ A(T), we let d(x, y) denote
the length of the unique simple path in A(T) connecting
x and y. The length of a path P will also be denoted by
L(P). A(T) is a metric space with respect to the above dis-
tance function. Also, for any path P and vk ∈ V we define
d(vk , P) = d(P, vk) = minx∈P d(x, vk). Each node vi ∈ V is
associated with a pair of nonnegative weights (ui, wi); ui and
wi are the center-weight and median-weight, respectively. We
assume that

∑n
i=1 ui > 0 and

∑n
i=1 wi > 0.

Let P∗ be a given subset of simple paths in T . We empha-
size that in this article all the paths in P∗ are assumed to be
discrete, that is, the endpoints of a path are nodes of T and

not arbitrary points in A(T). For any discrete path P, V(P)

will denote its node set.
We are interested in the following two criteria:

1. Weighted path center criterion

MAX(P) := max
vb∈V

ubd(vb, P).

2. Weighted path median criterion

SUM(P) :=
n∑

b=1

wbd(vb, P).

For each path P ∈ P∗, a node vk ∈ P is called critical for P if
the maximum center-weighted distance to P is attained at vk ,
that is, max

vb∈V
ubd(vb, P) = max

vb∈V−V(P):d(vb,vk)=d(vb, P)
ubd(vb, vk).

The classical continuous weighted (point) 1-center prob-
lem [17] on A(T) is to find a point x in A(T) minimizing the
objective

f (x) = max
vb∈V

ubd(x, vb).

Let c̄u be the unique solution to this problem, that is,

min
x∈A(T)

max
vb∈V

ubd(x, vb) = max
vb∈V

ubd(c̄u, vb).

The point c̄u can be obtained in O(n) time by the algorithm in
[18]. We augment the node set of T by c̄u and assume without
loss of generality that T is rooted at c̄u, that is, c̄u = v1.
We introduce some necessary concepts and notation from
multicriteria optimization. (For further details the reader is
referred to [11].) We first define the function that maps each
path in P∗ to a point in the plane:

ϕ: P∗ −→ R
2

P −→ (
MAX(P), SUM(P)

)
.

FIG. 1. Notation for a tree rooted at v1. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

NETWORKS—2006—DOI 10.1002/net 239

P∗ is called the decision space and the planar set ϕ(P∗) =
{(MAX(P), SUM(P)) : P ∈ P∗} is the bi-criteria or out-
come space. A point (M, S) ∈ ϕ(P∗) is a nondominated
outcome or a nondominated point if there is no path P ∈ P∗
such that MAX(P) ≤ M, SUM(P) ≤ S, and MAX(P) +
SUM(P) < M + S. Our main goal in this article is to con-
struct NDO(P∗), the nondominated set, defined as the subset
of all the nondominated points of the planar set ϕ(P∗).

We will prove that |NDO(P∗)| ≤ 2n for any subset
of paths P∗. We then show how to construct NDO(P∗) in
O(n log n) optimal time for the case where P∗ is the set of
all paths with length bounded above by L. We note that in
general a nondominated outcome can correspond to several
paths in P∗. In fact, if T is a star tree with n ≥ 4 nodes and
all edge lengths and node weights are equal to 1, all paths of
T which connect two leaves are mapped to the unique non-
dominated outcome (1, n−3). Therefore, to obtain a compact
representation, for each nondominated outcome we will find
only one path in P∗, which is mapped into this point. We call
such a path a representative efficient path.

3. COMPUTING CRITICAL VALUES FOR THE
WEIGHTED PATH CENTER PROBLEM

In this section we compute the set of all the critical values
for the weighted path center objective, that is, all the different
values that the function MAX(P) can take on. We first prove
that the cardinality of this set is at most 2n, and then provide
an O(n log n) algorithm for its construction. The result on the
cardinality implies that |NDO(P∗)| ≤ 2n for any subset of
paths P∗.

The O(n) algorithm in [18] finds c̄u, the weighted 1-center
of the tree, and also identifies a pair vs, vt of “bottleneck”
nodes defining c̄u. (As noted in the previous section, we add
c̄u to the node set of the tree, and assume without loss of gen-
erality that T is rooted at c̄u, i.e., c̄u = v1.) Specifically, v1 ∈
Pst and usd(vs, v1) = utd(vt , v1) = maxvi∈V uid(vi, v1).
Consider any pair of subtrees Ts and Tt such that

vs ∈ Ts, vt ∈ Tt , Ts ∩ Tt = {v1} and Ts ∪ Tt = T .

(see Fig. 2).
Throughout this section we assume that P∗ is any arbitrary

subset of paths in T . Define Ps, P t and P by

Ps = {P ∈ P∗ such that P ⊆ Ts}
P t = {P ∈ P∗ such that P ⊆ Tt}

P = {Pij ∈ P∗ such that vi ∈ Ts, vj ∈ Tt and vi, vj �= v1}.
Let A denote the set of distinct objective values MAX(P) for
all paths P ∈ P∗.

Theorem 3.1. |A| ≤ 2n.

Proof. Note that |P∗| is bounded above by n(n + 1)/2.
Consider first a path Pij ∈ P . Then Pij can be repre-
sented as the union of two paths, Pi1 and P1j. Let βs

i =
maxvk∈T s ukd(vk , Pi1) and let β t

j = maxvk∈T t ukd(vk , P1j).

FIG. 2. The case P ∈ Ps. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Then, MAX(Pij) = max(βs
i ; β t

j). Second, consider a path
P ∈ Ps, and let vk be the closest node to v1 in P. Because v1

is the continuous weighted center of the tree we have

MAX(P) = max
va∈V

uad(va, vk).

For vk ∈ Ts define δk = maxva∈V uad(va, vk). Then, for each
P ∈ Ps, MAX(P) is an element in {δk : vk ∈ Ts}. For vk ∈ Tt

define δk = maxva∈V uad(va, vk). Using a symmetric argu-
ment, we note that for each P ∈ P t , MAX(P) is an element
in {δk : vk ∈ Tt}. To conclude the proof we note that the set
A defined above satisfies

A ⊆ {βs
i : vi ∈ Ts}∪{β t

j : vj ∈ Tt}∪{δk : vk ∈ V}. ■

We note that the above proof demonstrates that if P ∈
Ps ∪ P t and vk is the closest node to v1 in P, then vk is the
only critical node of P (see Fig. 2).

Define

A∗ = {βs
i : vi ∈ Ts} ∪ {β t

j : vj ∈ Tt} ∪ {δk : vk ∈ V}.
The above theorem shows that the set A∗ is a superset of A.
We next refine the definition of a superset containing A.

Let {vp, vq}, vp ∈ Ts and vq ∈ Tt , be a pair of end
nodes defining the optimal weighted path center Ppq: that is,
MAX(Ppq) ≤ MAX(Pij) for all pairs vi, vj ∈ V . If the opti-
mal path is not unique we let Ppq denote the intersection of all
the optimal solutions, which is by itself an optimal solution.
Clearly, v1 = c̄u ∈ Ppq. An optimal weighted path center can
be obtained in O(n log n) time by the algorithm in [33].

We use the following definitions in further refining a super-
set containing A. For each node vk ∈ Ppq, vk �= v1, let va(k) be
the child of vk on Ppq. For convenience, we define va(p) = vp

and va(q) = vq. For v1 we let vas(1) (vat(1)) be the child of v1

on Pp1 (P1q). Also, for vk �= v1 set

γk = max
vb∈Va(k)

ubd(vb, vk),

240 NETWORKS—2006—DOI 10.1002/net

and for vk = v1 set

γ s
1 = max

vb∈Vas(1)

ubd(vb, v1),

γ t
1 = max

vb∈Vat (1)

ubd(vb, v1).

We note that v1 was selected to be the continuous weighted
center point of the tree, and therefore γ s

1 = γ t
1. Hence, we

adopt the notation

γ1 = γ s
1 = γ t

1.

Define

εs = max
va∈T s

uad(va, Ppq),

and

εt = max
va∈T t

uad(va, Ppq).

In particular, MAX(Ppq) = max{εt , εs}.

3.1. Properties of Ppq

1. If vk ∈ Ppq and vk /∈ {vp, vq, v1}, then

γk = max
vb∈Va(k)

ubd(vb, vk) > max
vb∈Vk\Va(k)

ubd(vb, vk),

and γk > max{εs, εt}.
2. If v1 �= vp, then

γ s
1 = max

vb∈Vas(1)

ubd(vb, v1) > max
vb∈Ts\Vas(1)

ubd(vb, v1),

and γ s
1 > max{εs, εt}.

3. If v1 �= vq, then

γ t
1 = max

vb∈Vat (1)

ubd(vb, v1) > max
vb∈Tt\Vat (1)

ubd(vb, v1),

and γ t
1 > max{εs, εt}.

We next show that the only candidates to be critical nodes
of the efficient paths in P are the nodes of Ppq (see Fig. 3).

Lemma 3.1. Let P ∈ P . Then any critical node of P must
belong to Ppq. Moreover, maxvb∈V ubd(vb, P) is an element
of the set

Ast = {γk : vk ∈ Ppq} ∪ {εs, εt}.

Proof. Consider a path P ∈ P , and let vr be a critical
node of P. Suppose without loss of generality that vr ∈ Ts

and vr is not on Pp1. Let vk be the closest node to vr in Pp1.
[Throughout this proof, if vk = v1 or vc = v1, the set V1

should be replaced by V1 ∩ Ts and the index a(1) should be
replaced by as(1).] Let vi be the leaf node (endpoint) of P in
Ts. Let vm ∈ V be such that

umd(vm, P) = umd(vm, vr) = max
va∈T s

uad(va, Pi1) = MAX(P).

FIG. 3. The case P ∈ P . [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Notice that vm ∈ Vr . Suppose first that vk �= vp. Then,
because vr , vm ∈ Vk \ Va(k) and vr ∈ Pmk , we can apply
Property 1 (or Property 2, in case vk = v1) to conclude that

γk = max
vb∈Va(k)

ubd(vb, vk) > max
vb∈Vk\Va(k)

ubd(vb, vk)

≥ umd(vm, vk) > umd(vm, vr).

Hence, we have contradicted the fact that vr is a critical node
of P.

Next, suppose that vk = vp, i.e., vr ∈ Vp. In this case,
Pp1 ⊂ Pi1 and

MAX(P) = umd(vm, vr) < umd(vm, vp) ≤ γp ≤ MAX(Ppq).

The inequality MAX(P) < MAX(Ppq) contradicts the opti-
mality of the path Ppq for the weighted center objective.

Therefore, we conclude that any critical node vk of P must
be a node of Ppq.

Now we prove that for each P ∈ P , the term MAX(P) is
an element of the set Ast .

Let vk ∈ Ppq be a critical node of P ∈ P . Without loss of
generality suppose that vk ∈ Pp1. From the above properties
of Ppq and the fact that va(p) = vp, it follows that for each
node vc ∈ Pp1,

max
va∈Vc

uad(va, vc) = max
va∈Va(c)

uad(va, vc).

Suppose first that P does not contain vp. If vk is the closest
node to vp on P, then from the above we obtain MAX(P) =
maxva∈Va(k)

uad(va, vk) = γk . Next, suppose that vc �= vk is
the closest node to vp on P. Note that in this case, because
vk , vc ∈ Pp1 and vk , vc �= vp, we have

γc ≤ max
va∈V

uad(va, P) = max
va∈Vk\Va(k)

uad(va, vk) ≤ εs.

However, by Properties 1 and 3, γc > εs and we obtain a
contradiction.

NETWORKS—2006—DOI 10.1002/net 241

Now suppose that P contains vp, that is, Pp1 is a subpath
of P. Then

MAX(Ppq) ≤ MAX(P) ≤ max
va∈T s

uad(va, Pp1)

= εs ≤ MAX(Ppq).

Therefore, max
va∈V

uad(va, P) = εs and the proof is complete.
■

There are two important consequences of the above
lemma. First, we do not have to consider critical nodes of
paths P ∈ P outside Ppq. Second, we only need to compute
maximum weighted distances to nodes in Ppq from nodes in
their descendant subtrees.

Define

A∗∗ = {γk : vk ∈ Ppq} ∪ {εs, εt} ∪ {δk : vk ∈ V}. (1)

The above lemma implies the following theorem.

Theorem 3.2. Let NDO(P∗) be the subset of all
nondominated outcomes of the planar set ϕ(P∗) =
{(MAX(P), SUM(P)) : P ∈ P∗}. Then, for each point (M, S)

in NDO(P∗), M ∈ A∗∗.

The reader may note that the above theorem implies that
our approach can be viewed as an efficient application of the
well-known general ε-constraint approach (see [11]) because
the elements in A∗∗ are, in fact, the different ε-values used
in that method to generate the set NDO(P∗). Indeed, we
identify the entire set of necessary ε-values in linear time
and we solve all the corresponding ε-constraint problems in
O(n log n).

3.2. Generating A∗∗

We now show how to generate A∗∗ in O(n log n) time.
First, we note that δk is the value of the weighted (point)

1-center function f (x), defined in Section 2, evaluated at
vk . Using the centroid decomposition we can compute the
weighted 1-center objective value at all nodes of a tree
network in O(n log n) time (see Tamir [31]).

Next, recall that the weighted path center Ppq can be found
in O(n log n) time by the algorithm in [33]. In particular, this
is the effort to find {εs, εt}.

Finally, consider the computation of the set {γk : vk ∈
Pp1, vk �= v1} ∪ {γ s

1 }. (A similar procedure is then applied to
compute {γk : vk ∈ P1q, vk �= v1} ∪ {γ t

1}.) We show how to
compute all these terms in O(n log n) time.

Without loss of generality, suppose that each node vk ∈
Pp1 is a point, say v′

k , on the real line, where v′
p = 0 and

v′
k = d(vp, vk).

For each vb ∈ Ts, let vi(b) be the closest node on Pp1 to
vb, and let gb(x) be defined by gb(x) = 0 if x < v′

i(b), and

gb(x) = ub[d(vb, vi(b)) + (x − v′
i(b))] when x ≥ v′

i(b).

Then

G(x) = max
vb∈T s

gb(x).

G(x) is piecewise linear and it can be generated in
O(n log n) time by the algorithm in [14]. Moreover, it is easy
to verify that for each vk ∈ Pp1, vk �= v1, γk = G(v′

k) and
γ s

1 = G(v′
1).

We remark that G(x) has at most 2n breakpoints. This
follows directly from the fact that each pair of functions in
the collection {gb(x) : vb ∈ Ts} can intersect in at most at
two points (see Sharir and Agarwal [26]).

Finally, we comment on the unweighted center function,
that is, the case where the center weights are identical. This
is the model studied in [3–5]. In this case, for each vk ∈ Ts,
γk = d(vk , vs) and δk = d(vk , vt). Similarly, for each vk ∈
Tt , γk = d(vk , vt) and δk = d(vk , vs). In particular, the set
A∗∗ can be computed in O(n) time.

4. OBTAINING THE WEIGHTED CENTER-MEDIAN
NONDOMINATED SET NDO(P∗) WHEN P∗ IS
THE SET OF ALL PATHS OF T

In this section we focus on the case where P∗ is the set of
all paths of T , and show how to obtain NDO(P∗), the com-
plete set of all doubly weighted center-median nondominated
outcomes, in O(n log n) time.

We note that the complexity of the algorithm presented
here is the same as the complexity of the algorithm presented
in the next section for solving the more general model with
a length constraint. However, the algorithm in this section
is much simpler. Moreover, unlike the more general algo-
rithm, its complexity reduces to O(n) in the unweighted case
of the center objective. It is obvious that in the case without
a length constraint we can assume that P∗ is the set of all
paths connecting two leaves of T . From the previous sections
we conclude that |NDO(P∗)| ≤ 2n. To generate NDO(P∗)
we first compute a planar set W , satisfying |W | = O(n)

and

NDO(P∗) ⊆ W ⊆ ϕ(P∗).

We remark that the set W is the set of points that
would be obtained after solving the ε-constraint prob-
lems taking A∗∗ as the admissible ε values. Specifically,
we note that the projection of W on the first coor-
dinate (the weighted center criterion) will be the set
A∗∗, defined in (1), and the projection on the second
coordinate (the weighted median objective) will be the
optimal value of each ε-constraint problem. (Note that
NDO(P∗) is then the rectilinear lower envelope of the
points in W , and it can be obtained from W in O(n log n)

time [16].)
To complete the analysis it remains to show how to

compute the set W .

242 NETWORKS—2006—DOI 10.1002/net

4.1. Computing the Set W

Consider the following terms. Let vi, vj be a pair of distinct
nodes such that (vi, vj) ∈ E:

SUM0(vi) =
∑
vb∈Vi

wbd(vb, vi), (2)

SUM1(vi, vj) =
∑

vb∈T(vi ,vj)

wbd(vb, vi), (3)

SUM2(vi, vj) = min
vb∈T(vi ,vj)

∑
vd∈T(vi ,vj)

wdd(vd , Pib), (4)

SUM3(vi, vj) = SUM1(vi, vj) − SUM2(vi, vj). (5)

Note that for any node vi the weighted sum of the distances
from its descendants satisfies:

SUM0(vi) =
∑

vj∈S(vi)

SUM1(vi, vj).

The values of SUMt(vi, vj), t = 1, 2, 3, for all (vi, vj) can be
computed in O(n) time using a straightforward modification
of the algorithm in Morgan and Slater [21].

We will now construct a set W with the above properties.
Specifically, for each value α ∈ A∗∗, we will find a path of
T , which minimizes the weighted sum function among the
subset of paths whose weighted center function is equal to α.

Case 1. In this case we consider all points in W , where the
value of α is in the set {δk : vk ∈ V}, and denote by W1

the corresponding elements of W . From the above discussion
the corresponding paths are contained either in Ps or P t . In
this case, a critical node of a path is the closest node of this
path to the weighted 1-center point c̄u = v1; that is, vk is a
critical point for P if d(vk , c̄u) = minx∈P d(x, c̄u).

Given a critical node vk with its respective value δk , an
efficient path must be such that it extends from vk in the
directions of two distinct descendants of vk with maximum
decrease in the sum objective. (Recall that we have assumed
that the tree graph T is rooted at c̄u = v1.) Let P be a can-
didate efficient path having vk as critical node. Then, we
have MAX(P) = max

vb∈V
ubd(vb, vk) = δk . To find P we iden-

tify vi, vj ∈ S(vk), vi �= vj, (i.e., two children of vk) such
that SUM3(vk , vi) ≥ SUM3(vk , vj) ≥ SUM3(vk , vb) for any
vb ∈ S(vk) \ {vi, vj}. Then

SUM(P) =
∑

vb∈N(vk)

SUM1(vk , vb)

− SUM3(vk , vi) − SUM3(vk , vj). (6)

Hence, (MAX(P), SUM(P)) is a candidate to be a non-
dominated point, and it is added to W1. [We assume that all
the terms SUMt(vi, vj), t = 1, 2, 3, (vi, vj) ∈ E, have already
been computed in O(n) time.] Hence, for each δk the effort
to compute SUM(P) above is O(|N(vk)|).

Given the set {δk : vk ∈ V}, the additional total time spent
to generate all the points in W1 corresponding to Case 1 is
O(n), because

∑
vk∈V |N(vk)| = 2n − 2.

Case 2. In this case we consider points in W corresponding
to the paths in P . Specifically, from the previous section, we
focus on instances where the value of α is either in {εs, εt} or
in {γk : vk ∈ Ppq}.

To simplify the notation we now use γp to denote
max{γp, εs} and γq to denote max{γq, εt}.

We first introduce some notation. For each vk ∈ Pp1, let

Ps
k = {Pi1 : vi ∈ Ts, Pi1 ∩ Pp1 = Pk1},

Ss(k) = min
Pi1∈P s

k

∑
vr∈T s

wrd(vr , Pi1).

Similarly, for each vk ∈ P1q, let

P t
k = {P1i : vi ∈ Tt , P1i ∩ P1q = P1k},

St(k) = min
P1i∈P t

k

∑
vr∈T t

wrd(vr , P1i).

We are now ready to generate W2, the set of all the points
in W corresponding to Case 2.

For vk ∈ Pp1 set

bs(k) = Ss(k) + min
vb∈P1q ,γb≤γk

St(b).

For vk ∈ P1q set

bt(k) = St(k) + min
vb∈Pp1,γb≤γk

Ss(b).

Define

W2 = {(γk , bs(k)) : vk ∈ Pp1} ∪ {(γk , bt(k)) : vk ∈ P1q}.
From the above definitions it is clear that the projection of
W2 on the left coordinate is the set Ast defined in the previous
section. Moreover, for each MAX value γk , vk ∈ Pp1 (γk ,
vk ∈ P1q), bs(k) (bt(k)) is indeed the correct SUM value,
that is, W2 ⊆ ϕ(P∗).

We conclude by showing that the total effort to compute
the subset W2 is O(n), when the set Ast is already available.
We first introduce some additional notation. For each vk ∈
Pp1, let

f s
k = min

vb∈P1q ,γb≤γk

St(b),

and for each vk ∈ P1q, let

f t
k = min

vb∈Pp1,γb≤γk

Ss(b).

From the above expressions it will suffice to prove that all
the terms {Ss(k)}, {St(k)}, {f s

k } and {f t
k } can be computed in

linear time. The sequence {γk} is decreasing when we move
vk along Pp1 from v1 to vp, and when we move vk along
P1q from v1 to vq. Therefore, the sets {f s

k : vk ∈ Pp1} and
{f t

k : vk ∈ P1q} can be computed in O(n) time when the
terms {Ss(k)}, {St(k)}, are available. We now show how to
compute {Ss(k)} and {St(k)} in O(n) time.

NETWORKS—2006—DOI 10.1002/net 243

To simplify the presentation we will focus only on the set
{Ss(k)}, and assume that the nodes in Pp1 are renumbered
consecutively with vas(1) = v2, va(2) = v3, etc. In particular,
if there are m nodes on Pp1, vp = vm. Compute:

SUM4(v1) = 0,

SUM4(vk) = SUM4(vk−1) + SUM0(vk)

− (SUM0(vk+1) − Wk+1d(vk+1, vk)),

k = 2, . . . , m − 1,

where Wk = ∑
vi∈Vk

wi. ({Wk}m
k=1 and the values SUM4(vk)

for all vk , k = 1, . . . , m − 1, can be computed in O(n) time.)
Notice that SUM4(vk), for any vk ∈ Pp1, gives the sum of

the weighted distances to Pk1 from all the nodes vr such that
d(vr , Pp1) = d(vr , Pk1), that is,

SUM4(vk) =
∑

vr∈T s\Va(k)

wrd(vr , Pk1).

[If vk = v1, replace the index a(1) by as(1).] It is now easy
to verify that for vk ∈ Pp1, vk �= v1,

Ss(k) = SUM0(vk)− max
vr∈S(vk)\Ppk

SUM3(vk , vr)+SUM4(vp(k)),

and

Ss(1) =
∑
vr∈T s

wrd(vr , v1) − max
vr∈(T s∩S(v1))\Pp1

SUM3(vk , vr).

From the above expressions it is clear that the total time to
compute all the terms {Ss(k)} is O(n). Hence, given the set
Ast , the total effort to compute the set W2 is linear.

To summarize, the total effort needed to compute the
superset W = W1∪W2, which contains all the nondominated
outcomes is O(n log n). (Note that with the above scheme we
can also record for each point in W a representative path cor-
responding to the MAX and SUM values of that point.) Given
the planar set W , we can then identify the nondominated set
itself in time O(|W | log |W |); see [16].

Therefore, the overall complexity of identifying NDO(P∗),
the complete set of nondominated outcomes, and the respec-
tive representative efficient paths of the doubly weighted
center-median path problem on a tree graph is O(n log n).

Theorem 4.1. When P∗ is the set of all paths in T,
NDO(P∗), the nondominated set corresponding to the doubly
weighted model, can be generated in O(n log n) time.

5. OBTAINING THE WEIGHTED CENTER-MEDIAN
NONDOMINATED SET NDO(P∗) WHEN P∗ IS
THE SET OF ALL PATHS OF T WITH LENGTH
BOUNDED ABOVE BY L

In this section we consider the case where P∗ = PL, the
set of all paths with length less than or equal to L. Again, our
goal is to identify the O(n) nondominated outcomes (and

the O(n) respective representative efficient paths) for this
restricted model. Following the results in Section 3, to effec-
tively obtain all the candidate pairs to be nondominated points
for the constrained-length MAX and SUM objectives, we will
compute for each value α ∈ A∗∗ a path with the minimum
value for the SUM objective, among all paths, with MAX
value equal to α and with length bounded above by L. Again,
from Section 3, |NDO(PL)| ≤ 2n. We will construct a super-
set WL, with cardinality O(n), containing all nondominated
outcomes for this restricted model, that is,

NDO(PL) ⊆ WL ⊆ ϕ(PL).

WL is the union of the sets W1
L and W2

L , defined as follows:
The set W1

L corresponds to all feasible paths, where the
MAX objective is in the set {δk : vk ∈ V}. (From Section 2,
these are the feasible paths in Ps ∪ P t .) Specifically,

W1
L = {(MAXL(vk), SUML(vk)) : vk ∈ V},

where

MAXL(vk) = max
vj∈V

ujd(vk , vj) = δk ,

SUML(vk) = min{P:L(P)≤L,V(P)⊆Vk ,vk∈P}
∑
vi∈V

wid(vi, P).

Note that SUML(vk) is the optimal value of the SUM
objective among all paths that are contained in Vk , include
vk , and have length bounded above by L.

Similarly, the set W2
L corresponds to all feasible paths

where the MAX objective is in the set {γk : vk ∈ Ppq}∪{εs, εt}.

5.1. Computing W1
L

As noted in Section 2, we can use the procedure in Tamir
[31] to compute MAXL(vk) = δk for all nodes vk ∈ V in
O(n log n) time.

The terms {SUML(vk) : vk ∈ V} can be computed in
O(n log n) time by the algorithm presented in Alstrup et al.
[1, 2] using the top trees data structure. [Note that the term
SUML(vk) coincides with the term MinCost(vk) in Alstrup
et al. [1].]

5.2. Computing W2
L

In this case we focus on the set of all feasible paths where
the MAX objective is in the set {γk : vk ∈ Ppq} ∪ {εs, εt}.
Using the notation in Section 2, these are the feasible paths
in P .

Using the same notation as in Section 4, let γp denote
max{γp, εs} and γq denote max{γq, εt}.

To explain our algorithmic approach, consider a node
vi ∈ Ts and the path Pi1. Suppose that Pi1 ∩ Pp1 =
Pk(i)1 for some node vk(i) ∈ Pp1. Then, from the above,
maxvb∈T s ubd(vb, Pi1) = γk(i). We now define bs

i to be the
smallest value of the SUM objective, over the set of paths P̂s

i
defined by

P̂s
i = {Pij : vj ∈ Tt , MAX(Pij) = γk(i), L(Pij) ≤ L}.

244 NETWORKS—2006—DOI 10.1002/net

Informally, bs
i is the best value of the SUM objective that

can be achieved by extending the path Pi1 towards Tt while
maintaining vk(i) as the critical node. It is given by

bs
i = min

Pij∈P̂ s
i

∑
vb∈V

wbd(vb, Pij).

Similarly, for each node vj ∈ Tt , we define the node vk(j),
the set P̂ t

j , and the value bt
j .

It is now clear that it is sufficient for our purposes to define

W2
L = {(γk(i), bs

i) : vi ∈ Ts} ∪ {(γk(j), bt
j) : vj ∈ Tt}.

Next, we show how to construct the set W2
L in O(n log n)

time. Due to symmetry, we only show how to compute the
set of points {(γk(i), bs

i) : vi ∈ Ts}.
To facilitate the discussion, for each node vi ∈ Ts define

Ss
i =

∑
vb∈T s

wbd(vb, Pi1).

Similarly, for each node vj ∈ Tt , set

St
j =

∑
vb∈T t

wbd(vb, P1j).

[The effort to compute all these values is O(n), if we use a
top down approach, starting at the root v1.] Then, for vi ∈ Ts,
we have

bs
i = Ss

i + min
{vj∈T t :γk(j)≤γk(i),d(vi ,vj)≤L}

St
j .

Recall that the sequence {γk} is decreasing when we move vk

from v1 to vp, and is increasing when we move vk from vq

to v1. We compute the terms {bs
i }, following the ordering of

the nodes {vk(i)}, along Pp1.
To simplify the notation, suppose that the nodes along Pp1

are numbered consecutively with vas(1) = v2, va(2) = v3, etc.
In particular, if there are m nodes on Pp1, vp = vm.

We begin with the node vm and consider all nodes vi ∈
Ts such that vk(i) = vm, that is, vi ∈ Vm. By scanning the
path P1q, we find vt(m), the closest node to v1 on P1q such
that γt(m) ≤ γm. With each node vj ∈ Tt , such that vj is a
descendant of vt(m), associate the planar point (d(v1, vj), St

j).
We maintain a list Lt whose elements are the above points

arranged in nonincreasing order with respect to the first coor-
dinate of its elements. By scanning the list, and eliminating
dominated points, we can assume that the remaining points
are arranged in increasing order of their first coordinate,
and the respective values of the second coordinate form a
decreasing sequence. The total effort of this initial phase is
O(n log n).

For each vi ∈ Vm, we now show how to compute bs
i in

O(log n) time. Find the point, say (d(v1, vj(i)), St
j(i)), in the

list Lt with the largest value of its first coordinate, which is
smaller than or equal to L − d(vi, v1) − d(v1, vj(i)). It is then
clear that bs

i = Ss
i + St

j(i).

In the next step we proceed to vm−1, the father of vm along
Pp1, and process all the nodes vi ∈ Ts such that vk(i) = vm−1.
By scanning the path P1q from vt(m) towards v1, we find
vt(m−1), the closest node to v1 on P1q such that γt(m−1) ≤
γm−1. With each node vj ∈ Vt(m−1) \ Vt(m), associate the
planar point (d(v1, vj), St

j). Insert all these points into the list
Lt , while eliminating dominated points. Again, we assume
that the remaining points are arranged in increasing order of
their first coordinate, and the respective values of the second
coordinate form a decreasing sequence. As above for each
vi ∈ Vm−1 \ Vm, we now compute bs

i in O(log n) time. Find
the point, say (d(v1, vj(i)), St

j(i)), in the updated list Lt with
the largest value of its first coordinate, which is smaller than
or equal to L − d(vi, v1) − d(v1, vj(i)). It is then clear that
bs

i = Ss
i + St

j(i).
We then proceed to vm−2, the father of vm−1 on P1p, and

compute the term bs
i for all nodes vi ∈ Ts such that vk(i) =

vm−2, etc.
Overall, there are m steps. If there are n′ insertions into, and

n′′ deletions from the list Lt during a step, the respective effort
is O(n′ log n′ +n′′). Therefore, the total effort to compute the
set {(γk(i), bs

i) : vi ∈ Ts} is O(n log n).
To summarize, the total effort needed to compute the set

WL = W1
L ∪ W2

L , satisfying NDO(PL) ⊆ WL ⊆ ϕ(PL), is
O(n log n). (Note that with the above scheme we can also
record for each point in WL a representative path corre-
sponding to the MAX and SUM values of that point.) Given
the planar superset WL, we can then identify NDO(PL), the
nondominated set itself, in O(|WL| log |WL|) time; see [16].

Theorem 5.1. Let PL be the set of all paths in T whose
length is bounded above by L. Then, NDO(PL), the nondom-
inated set corresponding to the doubly weighted model, can
be computed in O(n log n) time.

We note that if T itself is a path, NDO(PL) can be obtained
in linear time.

When the set WL is already available, we can solve a
general class of minimization problems in linear time. Con-
sider a general cost function F(MAX(P), SUM(P)), which is
assumed to be monotone nondecreasing in its two arguments.
If F can be evaluated at each planar point in constant time, we
conclude that a path minimizing F(MAX(P), SUM(P)) can
be obtained in O(n) time by evaluating F at each point of WL.
For example, we can solve the minimization problems men-
tioned below [(7)–(9)] in linear time by enumerating all the
points in WL, improving and extending the results in [3–5].
When the set NDO(PL) is given and ordered according to
the MAX coordinates, we can generate the extreme points of
its convex hull in O(n) time, and then solve each of these
minimization problems in O(log n) time.

Theorem 5.2. Let PL be the set of all paths in T whose
length is bounded above by L. Suppose that NDO(PL),
the nondominated set corresponding to the doubly weighted
model, has already been computed and ordered according to
the MAX coordinate. Then the extreme points of the convex

NETWORKS—2006—DOI 10.1002/net 245

hull of NDO(PL) can be computed in O(n) time and for
any positive real α the following problems can be solved
in O(log n) time:

The doubly weighted path α-centdian problem, defined by

min{MAX(P) + αSUM(P) : P ∈ PL}, (7)

the doubly weighted, center α-restricted path median prob-
lem, defined by

min{SUM(P) : P ∈ PL, MAX(P) ≤ α}, (8)

and the doubly weighted, median α-restricted path center
problem, defined by

min{MAX(P) : P ∈ PL, SUM(P) ≤ α}. (9)

Note that articles [4, 5] consider only the version where the
center criterion is unweighted and give O(n log2 n) algo-
rithms for solving the last pair of problems. We solve these
problems even for the doubly weighted model in O(n log n)

time.
Also, when the set NDO(PL) is available, and ordered by

its MAX or SUM coordinates, we can obtain in linear time
the partition of the α parameter space associated with each
optimal solution of the above problems. This is obvious for
the two α-restricted problems of the last theorem. To obtain
the partition of the α parameter for the centdian problem,
we only need to generate the extreme points on the lower
envelope of the convex hull of NDO(PL). As noted above,
the latter task can be performed in O(n) time, because the set
NDO(PL) is already ordered by one of its coordinates.

5.3. Lower Bounds

We claim that the above O(n log n) algorithm to construct
the set NDO(PL) (or even the set WL) for the doubly weighted
model is, in fact, optimal.

It is shown in [28, 37] that �(n log n) is a lower bound
on the complexity of the problem min{SUM(P) : P ∈ PL}.
Hence, from the above discussion and the last theorem, we
conclude that the O(n log n) complexity of our algorithm to
find NDO(PL) and WL is indeed optimal.

6. OPEN PROBLEMS

We have presented above optimal O(n log n) algorithms
to solve path location problems on a tree network, when the
objective is a monotone function of the doubly weighted cen-
ter, median criteria. It is an open question whether there are
subquadratic algorithms for more general, or other common
objective functions, that have been studied recently in the
context of extensive facilities.

For example, in [10], the authors present an O(n2 log n)

algorithm for locating a path minimizing the variance of
distances of the nodes from the path.

Another example is the k-centrum model and its general-
ization, known as the convex ordered median model, studied

recently in [25] with respect to subtree facilities. (In the
k-centrum problem, the objective is to minimize the sum of
the k largest weighted distances from the selected facility. See
[25] for the definition of the convex ordered median objec-
tive.) The question is whether one can locate a path facility
with any of these functions in subquadratic time.

Finally, in view of the lower bounds on complexity from
the last section, we conclude that the O(n log n) algorithms
to solve the first two problems in Theorem 5.2 can not be
improved. We do not know of any lower bound on the com-
plexity of the third problem. However, currently, even the best
bound known [33] for solving the unrestricted weighted path
problem is still O(n log n). In addition to this open problem
we can also list the following:

Can we solve the length restricted problem min{MAX(P) :
P ∈ PL, SUM(P) ≤ α} in O(n) time for the unweighted
center model?

Can we solve the length unrestricted problem min{SUM(P) :
MAX(P) ≤ α} in O(n) time for the weighted center model?

REFERENCES

[1] S. Alstrup, P.W. Lauridsen, P. Sommerlund, and M. Tho-
rup, “Finding cores of limited length,” Proc 5th International
Workshop on Algorithms and Data Structures (WADS), Lec-
ture Notes in Computer Science, Vol. 1272, Springer, Berlin,
1997, pp. 45–54.

[2] S. Alstrup, P.W. Lauridsen, P. Sommerlund, and M. Tho-
rup, “Finding cores of limited length,” IT-C Technical report
Series 2000-4, The IT University of Copenhagen, 2001.

[3] I. Averbakh and O. Berman, Algorithms for path medi-center
of a tree, Comput Oper Res 26 (1999), 1395–1409.

[4] R.I. Becker, Y. Chiang, I. Lari, and A. Scozzari, The cent-
dian path problem on tree networks, ISAAC 2001, Lecture
Notes in Computer Science, Vol. 2223, Springer, Berlin,
2001, pp. 743–753.

[5] R.I. Becker, Y. Chiang, I. Lari, and A. Scozzari, “Algorithms
for central-median paths with bounded length on trees”,
Technical report, University of Cape Town, South Africa,
2004.

[6] R.I. Becker, Y. Chiang, I. Lari, A. Scozzari, and G. Storchi,
Finding the l-core of a tree, Discrete Appl Math 118 (2002),
25–42.

[7] R.I. Becker, I. Lari, and A. Scozzari, Efficient algorithms for
finding the (k, l)-core of tree networks, Networks 40 (2003),
208–215.

[8] R.I. Becker and Y. Perl, Finding the two-core of a tree,
Discrete Appl Math 11 (1985), 103–113.

[9] B. Boffey and J.A. Mesa, A review of extensive facility
location in networks, Eur J Oper Res 95 (1996), 592–600.

[10] T. Caceres, M.C. Lopez de-los Mozos, and J.A. Mesa, A path-
variance problem on tree networks, Discrete Appl Math 145
(2004), 72–79.

[11] M. Ehrgott and M.M. Wiecek, “Multiobjective program-
ming,” Multiple criteria decision analysis: State of the art
surveys, International Series in Operations Research and
Management Science, J. Figueira, S. Greco, and M. Ehrgott
(Editors), Springer, Berlin, 2005, Vol. 76, pp. 667–722.

246 NETWORKS—2006—DOI 10.1002/net

[12] S.L. Hakimi, E.F. Schmeichel, and M. Labbé, On locat-
ing path-or tree shaped facilities on networks, Networks 23
(1993), 543–555.

[13] S.M. Hedetniemi, E.J. Cockayne, and S.T. Hedetniemi, Lin-
ear algorithms for finding the Jordan center and path center
of a tree, Transport Sci 15 (1981), 98–114.

[14] J. Hershberger, Finding the upper envelope of n line seg-
ments in O(n log n) time, Inform Process Lett 33 (1989),
169–174.

[15] E. Jennings, Distributed algorithms for finding central paths
in tree networks, Comput J 42:7 (1999), 609–612.

[16] S. Kapoor, Dynamic maintenance of maxima of 2-d point
sets, SIAM J Comput 29 (2000), 1858–1877.

[17] O. Kariv and S.L. Hakimi, An algorithmic approach to net-
work location problems, Part I, The p-centers, SIAM J Appl
Math 37 (1979), 513–538.

[18] N. Megiddo, Linear-time algorithms for linear programming
in R3 and related problems, SIAM J Comput 12 (1983),
759–776.

[19] E. Minieka, The optimal location of a path or tree in a tree
network, Networks 15 (1985), 309–321.

[20] E. Minieka and N.H. Patel, On finding the core of a tree with
a specified length, J Algorithms 4 (1983), 345–352.

[21] C.A. Morgan and P.J. Slater, A linear algorithm for a core of
a tree, J Algorithms 1 (1980), 247–258.

[22] S. Nickel, J. Puerto, and A.M. Rodríguez-Chía, “MCDM
location problems,” Multiple criteria decision analysis:
State of the art surveys, International Series in Operations
Research and Management Science, J. Figueira, S. Greco,
and M. Ehrgott (Editors), Springer, Berlin, 2005, Vol. 76,
pp. 761–795.

[23] S. Peng and W. Lo, Efficient algorithms for finding a core
of a tree with specified length, J Algorithms 20 (1996),
445–458.

[24] S. Peng, A.B. Stephens, and Y. Yesha, Algorithms for a core
and k-tree core of a tree, J Algorithms 15 (1993), 143–159.

[25] J. Puerto and A. Tamir, Locating tree-shaped facilities using
the ordered median objective, Math Program 102 (2004),
313–338.

[26] M. Sharir and P.K. Agarwal, Davenport-Schinzel sequences
and their geometric applications, Cambridge University
Press, New York, 1995.

[27] A. Shioura and M. Shigeno, The tree center problems and
the relationship with the bottleneck knapsack problems,
Networks 29 (1997), 107–110.

[28] A. Shioura and T. Uno, “An O(n log n) time algorithm for an
l-core of a tree”, Technical report, Tohoku University, Japan,
2002.

[29] P.J. Slater, Locating central paths in a graph, Transport Sci
16 (1982), 1–18.

[30] A. Tamir, Fully polynomial approximation schemes for locat-
ing a tree-shaped facility: A generalization of the knapsack
problem, Discrete Appl Math 87 (1998), 229–243.

[31] A. Tamir, Sorting weighted distances with applications to
objective function evaluations in single facility location
problems, Oper Res Lett 32 (2004), 249–257.

[32] A. Tamir and T.J. Lowe, The generalized p-forest problem
on a tree network, Networks 22 (1992), 217–230.

[33] A. Tamir, J. Puerto, J.A. Mesa, and A.M. Rodriguez-Chia,
Conditional location of path and tree shaped facilities on
trees, J Algorithms 56 (2005), 50–75.

[34] A. Tamir, J. Puerto, and D. Perez-Brito, The centdian subtree
on tree networks, Discrete Appl Math 118 (2002), 263–278.

[35] B.-F. Wang, Efficient parallel algorithms for optimally locat-
ing a path and a tree of a specified length in a weighted tree
network, J Algorithms 34 (2000), 90–108.

[36] B.-F. Wang, Finding a two-core of a tree in linear time, SIAM
J Discrete Math 15 (2002), 193–210.

[37] B.-F. Wang, S.-C. Ku, and Y.-H. Hsieh, “The conditional
location of a median path,” Proc 8th Ann International Con-
ference on Computing and Combinatorics (COCOON 2002),
Singapore, 2002, pp. 494–503.

NETWORKS—2006—DOI 10.1002/net 247

